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INTRODUCTION 

The Feltman Research Laboratory had been conducting a long-term 
study of isomorphous oxidizer solid solutions or mixed crystals (refs. I and 
3 through 6) .   These crystals have potential applications in solid propellant 
rocket motors and gun propellant systems.   The synthesis of these oxidizer 
solid solutions is described in reference 7. 

One of the more interesting aspects about the characterization of the 
experimental solid solutions is their structures.   In ammonium perchlorate- 
potassium perchlorate (AP-KP) materials, both crystals are closely related 
isomorphously; at normal temperatures they are orthorhombic, but at higher 
temperatures they become cubic.   According to Simanova and Shul'ts 
(ref. 8), when this salt pair is cocrystallized from water at 25.0oC, a con- 
tinuous series of mixed crystals is formed over the whole composition range. 
However,  it appears that little effort has been made to study these and other 
similar oxidizer solid solutions by direct methods. 

It is particularly desirable to carry out x-ray diffraction studies of 
mixed crystals to determine their structure wholly or in part.   AP-KP solid 
solutions (where no discontinuities in structure were to be expected over 
the whole compositional range at normal temperatures) required a precision 
lattice constant study.   A precision technique was needed because of the 
relatively small difference in unit cell dimensions of AP and KP (ref. 9) . 

It is not advantageous for most purposes to use single crystal x-ray 
techniques for microcrystalline products like ours because there is some un- 
certainty in using any single crystal to represent the aggregate.   The pre- 
ferred method is to pulverize the product and analyze it by the Debye 
Scherrer or diffractometer x-ray methods.    (This is a less useful approach 
for determining structure than single crystal methods.)    It is possible to 
make certain limited speculations about the changes in structure of one com- 
ponent upon the introduction of another into its crystal lattice based upon 
x-ray powder pattern data.   Also, the use of powder methods is advisable 
in cases like ours where a complete structure determination is not intended. 

There has been some interest in connection with this work in specu- 
lating whether structural ordering exists in some of the products.   This 
subject has been discussed for a gold-copper alloy solid solution, AuCus, 
by Guinier (ref. 2) .   If the alloy is quenched from a temperature above 
4250C, its x-ray diffraction pattern displays face-centered cubic symmetry 
as do the diffraction patterns of gold or copper.   On the other hand,  if the 



alloy is cooled gradually instead of being rapidly quenched, the x-ray dif- 
fraction pattern is more complex.   This is a direct result of the ordering of 
the structure.   The additional new diffraction lines are due to x-ray reflec- 
tions from new planes of atoms formed by the ordering process.   The term 
"superlattice" is used to describe this formation of a secondary structural 
arrangement by the process of ordering. 

From the standpoint of structure, all of the solid solutions used in 
this study represented considerably less ideal cases for x-ray studies than 
the gold-copper one of Cuinier.   For this and other reasons, a rigorous 
study of the subject of order vs disorder was not attempted here.   However, 
the problem was considered and is discussed in this report. 

RESULTS AND DISCUSSION 

Order vs Disorder 

Generally speaking, the accepted view of solid solutions is that there 
are two types, substitutional and interstitial.   This study deals with sub- 
stitutional solutions.   From the standpoint of structure, one can consider 
that,  in the formation of substitutional solid solutions, each crystallographic- 
ally equivalent site in the unit cell is filled with a statistical atom.   This 
indicates that sites are randomly filled with host and substituted atoms.   The 
type of lattice involved can have an important bearing upon the order in a 
solid solution.   With primitive lattices a substitutional solid solution will be 
disordered, but both disordered and ordered (superlattice) substitutional 
types can occur with non-primitive lattices. 

For example, when an ionic compound AB crystallizes in the cubic 
system, two possible ionic configurations are the CsCI structure and the 
NaCI one.   The CsCI   (fig. 1) has a primitive lattice with the cation, A+, 
occupying the (000) site and the an ion, B_, the (1/2 1/2 1/2) site.   If a 
small amount of the cation component C+ is substituted for the A+ cation, 
there will be random distribution of C+ cations on (000) sites throughout 
the entire crystal.   On the basis of the representative unit cell  (fig. 2) 
however, each (000) site can be considered filled by a statistical AC+ cation. 
If there is no limitation upon substitution, then a continuous disordered 
AC,     B solid solution series is formed in which x = 0 to 1 .   The resulting x   1-x a 

simple cubic x-ray diffraction patterns of the solid solution series has unit 
cell parameters which lie between those of the pure compounds AB and CB. 



On the other hand, the NaCI structure (fig. 3)  is based on a non- 
primitive, face-centered cubic unit cell.   In this case the cation A+ occupies 
two sets of equivalent positions.   One cation occupies the corner position 
(000), and three cations occupy the face-centered positions,   (1/2 1/2 0), 
(0 1/2 1/2), and (1/2 0 1/2) .   The anions occupy the (1/2 1/2 1/2), 
(1/2 0 0),   (0 1/2 0), and (0 0 1/2) positions.   In this situation, cationic 
substitution could occur either randomly over all the lattice sites, or selec- 
tively over one set of equivalent sites.   If the substitution is completely 
random over all sites, a continuous disordered solid solution series results. 
The x-ray diffraction patterns in this case show systematic absences of re— 
flections indicating face-centered cubic symmetry. 

If substitution is selective to the face-centered positions, an ordered 
A   C.,      B,. (X = 1 to 4) solid solution series occurs, terminating in the x    4-x    4 ' » 
formation of the compound, AC B   , as is shown in figure 4.   If selective 
substitution occurs on corner positions, as illustrated in figure 5, an 
ordered A      C  B   (X = 1 to 0) solid solution series results, forming the 
compound A CB  .   Ordered substitution, or superlattice formation, usually 
changes the symmetry of the crystal;   in this case, from face-centered cubic 
to simple cubic. 

In theory, the presence of ordered substitution is easy to detect by 
means of x-ray diffraction.   The x-ray patterns will exhibit simple cubic 
symmetry because of the superlattice reflections.   In the example of the 
NaCI, there will be systematic reflection absences in the x-ray pattern of 
AB.   In both cases the length of the edge of the unit cell is identical.   The 
intensity of this set of lines varies directly with substitution, and reaches 
a maximum at complete substitution.   Furthermore, the intensity of the set 
of superlattice lines will depend upon the difference in atomic numbers of 
cation A and cation B.   If both cations have similar atomic numbers the 
superlattice lines will be faint.    If they differ markedly the superlattice 
lines will be stronger. 

The forms of ammonium perchlorate (AP) and potassium perchlorate 
(KP) which exist   at normal room temperature are simple orthorhombic 
(Pnma) that have one set of equivalent sites available for substitution, and 
no superstructure is expected.   The high temperature form of each compound, 
however, crystallized in the face-centered cubic NaCI structure.   In this 
case there is a definite possibility for the occurrence of superlattices in the 
solid solutions.   Since high temperature x-ray studies have not been con- 
ducted it was not possible to find evidence for this.   In the more complex 
cases of the other types of solid solutions no speculations were made about 
whether ordered arrangements and superlattices might be present. 



Ammonium Perchlorate (AP)-Potassium Perchlorate (KP) 

The preparation of these AP-KP solid solutions as well as other ex- 
perimental ones by isothermal cocrystallization has been described in 
reference 7.   Our x-ray studies were limited to three different compositions 
of AP and KP, namely those with AP-KP weight ratios of 3: 1,  1:1, and 1:3. 

Comparisons of interplanar d spacings and relative intensities of 
beams of x-rays diffracted from them (of AP, KP, physical mixtures, and 
corresponding solid solutions) are shown in tables 1, 2, and 3.   The data 
is represented graphically in figure 6.   The two strongest lines of AP, at 
4. 58 and 3.25 Aappear in both physical mixtures and solid solutions of 
corresponding compositions, namely those with weight ratios of 3: 1-AP: KP 
and 1: 1-AP: KP.   In the case of the KP-rich mixture 1: 3-AP: KP, the only d 
spacing of AP present in the physical mixtures is the principal one at 4. 60. 
It has a slightly altered value in the corresponding 1: 3 mixed crystal, 4. 53 
vs 4.58 for pure AP, for instance.   Precise measurement of relatively subtle 
changes in interplanar spacings caused by substituting the KP isomorph 
into the crystal lattice of AP is essentially beyond the scope of this investi- 
gation.    It would be difficult to distinguish between the 3: 1-AP: KP physical 
mixture vs the solid solution on the basis of their x-ray patterns alone.   The 
1: 1 and 1: 3 physical mixtures vs their corresponding solid solutions can be 
differentiated easily on the basis of their x-ray diffraction patterns.   Thus, 
in the latter two cases we were able to demonstrate readily, by simple x-ray 
techniques, the dissimilarity of the solid solutions in question. 

Ammonium Nitrate (AN)-Ammonium Perchlorate (AP) Solid Solutions 

Synthesis of this series of solid solutions by isothermal cocrystalliza- 
tion is discussed in reference 7.   Four different solid solution compositions 
having weight ratios of AN-AP of 8: 1, 1:1, 1: 3, and 1: 5 were investigated 
by x-ray.   The x-ray diffraction patterns of this series is shown in figure 7. 
It is evident that although the d spacing in the AN: AP solid solutions with 
an 8: 1 ratio of ingredients are somewhat different from pure AN, there is a 
strong resemblance to the diffraction pattern of AN.   The pattern of the 1: 1 
material is unlike either AN or AP.   The solid solutions which are AP-rich, 
with AN: AP weight ratios of 1: 3 and 1: 5, have patterns similar, but not 
identical, to that of AP. 

Figure 8 shows the x-ray diffraction patterns of physical mixtures of 
AN and AP corresponding to the solid solutions in figure 7.   Both x-ray 
diffraction patterns are shown in figure 9 so their differences can be seen. 
None of the patterns of the solid solutions are identical to those of the cor- 
responding physical mixtures.   The patterns of two AP-rich solid solutions 



of nearly the same composition are compared in figure 1 0 to a physical mix- 
ture of similar composition.   Despite their similar chemical composition, the 
x-ray patterns of the two solid solutions are significantly different.   Also 
they are not the same as those of the corresponding physical mixtures. 
Figure 11  illustrates the manner in which the d spacings with the greatest 
diffraction intensities of pure AN and AP vary with introduction of increas- 
ing amounts of the other component.   The intensities of the five major dif- 
fraction lines of AN, 4.95, 3.96, 3.09, 2.72, and 2.26 either disappear or 
fall to low values in the 1: 1 solid solution.   The same is true of the seven 
strongest diffraction lines of AP.   A unique line, 2.59, appears in theAN:AP 
1: 5 solid solution. 

In figure 12, the changes in the relative intensities of the three strong- 
est diffraction lines of AN as AP is introduced isomorphously into its crystal 
lattice are compared to those of physical mixtures of similar compositions. 
Obviously, the three strongest lines in the solid solutions are different from 
those in the corresponding physical mixtures.   Figure 13 shows the behavior 
of the three strongest diffraction lines of AP in the series of solid solutions 
vs physical mixtures.   These last two figures support the evidence for the 
difference of the structure of the AN-AP solid solutions from either pure AN 
or pure AP. 

Ammonium Nitrate (AN)-Potassium Nitrate (PN) 

Reference 7 describes the preparation of solid solutions and the addi- 
tion compound, 3KN«AN   , formed by isothermal cocrystallization from the 
ternary system AN-KN-H20 at 25.0oC.   Two series of solid solutions occur 
here:   AN with the compound 3KN«AN, and KN with 3KN«AN.   We were par- 
ticularly interested in isolating and obtaining the x-ray pattern of the addi- 
tion compound, 3KN»AN.   This is shown in figure 14, along with the patterns 
of the respective pure components and a physical mixture with the same rela- 
tive amounts of components as in the addition compound.   As might be ex- 
pected, the pattern of this addition compound 3KN«AN, more nearly resembles 
that of the principal component, KN than that of AN.   The pattern differs 
from those of the corresponding physical mixture and the pure components. 

Figure 15 shows not only the same patterns as in figure 14, but also 
those of three different solid solutions which are also unlike their corres- 
ponding physical mixtures.   The pattern of the solid solution containing 
88.1% KN resembles and shows the influence of the 3KN»AN addition compound 
upon its structure.   Significantly, the x-ray pattern of a solid solution con- 
taining only a small amount of AN (5.5% by weight) differs considerably from 

*3KN'AN is the addition compound composed of three molecules of KN and 
one of AN. 



the x-ray pattern of pure KN.   At the other end of the composition range of 
the solid solutions it can be seen that introduction of 31.4% by weight of KN 
into AN also causes substantial alteration of the diffraction pattern when 
compared to that of pure AN . 

Ammonium Nitrate (AN)-Potassium Perchlorate (KP) 

KP was dissolved in molten AN to make a solid solution with an AN-KP 
weight ratio of 3: 1   (ref. 7) .   Th diffraction pattern of this material, as well 
as that of a physical mixture with the same relative weights of components, 
is given in table 4 and figure 16.   Figure 16 shows the strongest diffracting 
lines of AN and KP are absent in the solid solution.   It is quite evident upon 
further comparison that the solid solutions patterns are quite unlike the 
corresponding physical mixture.   The x-ray patterns of the solid solutions 
are different from their respective physical mixtures and, by inference, so 
is the arrangement of the respective atoms and ions in their structural lat- 
tice networks. 

CONCLUSIONS 

Though rigorous structural determinations are desirable wherever 
possible for characterizing new crystalline material, the use of simpler 
x-ray technique was effective in these studies.   The x-ray powder data was 
helpful in characterizing the experimental oxidizer solid solutions and one 
addition compound as being unique materials.   The major result of this 
investigation clearly shows that these solid solutions are entirely different 
compositions of matter than even the most finely ground physical mixtures 
containing the same relative amounts of components.   Thus, theoretical ex- 
pectations are confirmed. 



Table 1 

X-ray diffraction data of AP, KP, and their physical mixtures 

AP 
d    Vlo* 

3:1 - 
d 

5.82 

• AP:KP 

Mo 
30 

1:1 - 
d 

AP:KP 

^0 
1:3 - 
d 

AP:KP 

I/Io 

KP 
d Vlo 

4.58  100 

3.92    43 

4.60 

3.93 

100 

52 

4.58 40 
5.68 

4.53 

26 

38 
4.47 30 

3.72    33 3.74 

3.63 

36 

85 3.62 66 

3.&7 

3.53 

68 

100 

3.63 29 

3.50 30 3.48 100 3.49, 100 

3.25     51 3.26 64 3.25 28 
3.40 29 

3.36 31 

3.15 34 
3.14 45 

3.18 

2.92 

91 

48 
3.15 78 

2.97     42 

2.60      29 

2.99 

2.91 

2.60 

54 

34 

31 
2.88 28 

2.18 

2.14 

20 

21 

2.89 
2.83 

2.17 
2.16 
2.12 

67 
28 

24 
22 
25 

*I is the height of the diffractometer peak for the d spacing in question. 
I   is the highest peak of all observed for the sample. 



Table 2 

X-ray diffraction data of AP, KP, and their solid solutions 

AP 
d    I/I0 

4.58 100 

3.92 43 

3.72 33 

3.25 51 

3:1 - 
d 

AP:KP 

I/Io 

1:1 - 
d 

AP:KP 

I/Io 

1:3 - 
d 

AP:KP 

I/Io 

KP 
d I/I 

5.82 36 5.79 26 
5.68 26 

4.61 
4.57 

99 
100 

4.53 38 
4.47 30 

3.93 60 
3.88 38 

3.74 

3.62 

38 

100 

3.70 

3.59 

44 

93 

3.67 68 
3.63 29 

3.25 70 3.53 100 3.49 10 

2.97   42        2.98     56 

2.60   29        2.60    30 

3.23    80      3.40    29 
3.36   31 

3.18    91 
3.15  -78 

2.95    66 
2.92 48 

2.89    36 2.89   67 
2.86    30 

2.83   28 

2.58    33 
2.17    24 

2.18     20 

2.14    21 

2.17   24 
2.16   22 

2.12   25 
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Solid solution 

Rel  int 

4.53 40 

3.90 78 
3.56 36 

3.39 51 
3.24 65 
3.21 100 

2.94 27 

2.83 30 

2.62 69 
2.55 61 

2.32 28 
2.26 28 

Table 4 

X-ray data of 3 AN: KP solid solution and 
3 AN,KP physical mixture 

Physica mixture 

d Rel int 

4.92 86 

3.97 44 

3.49 30 

3.15 

3.09 

21 

100 

2.88 72 

2.74 76 

2.40 25 

2.26 28 

10 
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□      CATION A+ ON    (OOO) SITE 

ANION    B-   ON    Vk '/a 'y^) SITE 

Figure 1.   Representative unit cell of Compound AB 
(simple cubic CsCl structure type) 
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STATISTICAL [ACfCATION ON (OOO) SITE 
ANION B"ON  C^'/z'/z) SITE 

Figure 2.   Representative unit cell of disordered A        C  B 
solid solution (simple cubic CsCI structure type) 
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□     CATIONS A+ON (OOO) SITE AND V/^/20)t 

(O'/z'/zM'^OJk) SITES 

ANIONS B"ON (%%%) SITE AND (i/gOO), 
(OO'/aMO'y&OjSITES 

Figure 3.   Representative unit ceil of Compound AB 
(face-centered cubic NaCI structure type) 
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Figure 4.   Representative unit cell of ordered solid solution 
AC B    (simple cubic superstructure) 
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